Adaptive Gait for Large Rough Terrain of a Leg-Wheel Robot (Third Report: Step-Down Gait)
نویسندگان
چکیده
A leg-wheel robot with four mechanically separated legs and two wheels is highly mobile and stable on rough terrain. We discuss the strategy for the robot movement over large rough terrain, classifying topographical features into 13 patterns of combined terrain surface. To traverse all classified terrain, we propose three adaptive gaits: (1) Step-up gait in which frontfoot landing is higher than contact with the wheel ground, and the robot raises itself toward frontfoot landing; (2) Step-down gait in which frontfoot landing is lower than contact with the wheel ground, and the robot lowers itself toward frontfoot landing; and (3) Step-over gait in which frontfoot landing is no higher than contact with the wheel ground, but the robot raises itself as high as possible.1
منابع مشابه
Design and development of a leg-wheel hybrid robot "HyTRo-I"
This paper proposes a novel and mechanically decoupled leg and wheel hybrid transformable robot called HyTRo-I that combines two mobility concepts. For example, while wheeled vehicles shares higher speed than legged and tracked machines on a flat ground, they have relatively lower degree of flexibility than the other two on irregular terrain. The HyTRo-I robot evolves three motion modes: wheele...
متن کاملFeature Extraction for Terrain Classification with Crawling Robots
In this paper, we address the problem of terrain classification using a technically blind hexapod walking robot. The proposed approach is built on top of the existing method based on analysis of the feedback from the robot’s actuators and the desired trajectory. The formed method uses features for the Support Vector Machine classification method that assumes a regular time-invariant gait to con...
متن کاملConceptual Design of a Gait Rehabilitation Robot
Gait rehabilitation using body weight support on a treadmill is a recommended rehabilitation technique for neurological injuries, such as spinal cord injury. In this paper, a new robotic orthosis is presented for treadmill training. In the presented design the criteria such as low inertia of robot components, backdrivability, high safety and degrees of freedom based on human walking are conside...
متن کاملLearning adaptive leg cycles using fitness biasing
This paper discusses the use of fitness biasing to alter the control of a seven microprocessor robot as it shifts from one environment to another. The robot was initially using a gait evolved to work on a smooth surface (tile). When tested on a rough surface (carpet) the learned gait was found to be inappropriate because the legs were causing drag as they repositioned. An efficient move to repo...
متن کاملRobotic walking in natural terrain Gait planning and behavior-based control for statically-stable walking robots
A substantial portion of the Earth is inaccessible to any sort of wheeled mechanism— natural obstacles like large rocks, loose soil, deep ravines, and steep slopes conspire to render rolling locomotion ineffective. Hills, mountains, shores, seabeds, as well as the moon and other planets present similar terrain challenges. In many of these natural terrains, legs are well-suited. They can avoid s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JRM
دوره 21 شماره
صفحات -
تاریخ انتشار 2008